

CN3938V : High Drive Bi-directional Voice Coil Motor Driver IC with I2C interface

1. Description

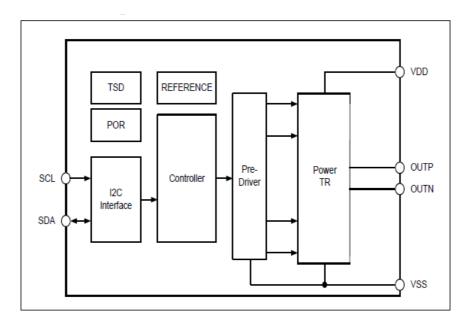
The CN3938V is single 10-bit DAC with \pm 130mA output current source/sink capability. Designed for bi-directional linear control of voice coil motors, the CN3938V is capable of operating voltage from 2.3V to 5.5V. The DAC is controlled via a I2C serial interface that operates DAC by clock rates up to 1000kHz.

The CN3938V incorporates with a UVLO reset circuit, power-down function, and exactly matched sense resistor. UVLO reset circuit ensure when supply power up, DAC output is to 0V until valid write-bit value takes place. It has a power down features that reduces the current consumption of the device to 1uA maximum.

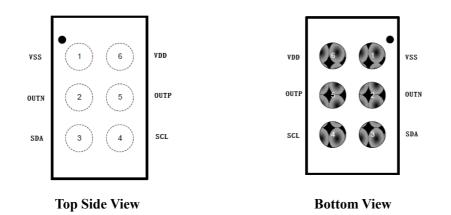
The CN3938V is designed for auto focus and optical zoom camera phones, digital still cameras, and camcorders applications. The I2C Write/Read address for the CN3938V is 0x18/0x19 respectively.

Features

- WLCSP package for minimum footprint
- Advanced SRC mode
- 10-bit D-to-A converter
- Current souring/sinking of ±130mA
- 194 μ A *lout* resolution for ± 100 mA
- Fast I2C serial interface (1.8V input available)
- Low current sleep mode
- 2.3 to 5.5 V power supply


Applications

- Digital camera
- Cell phone
- Lens auto focus
- Web camera


Package

- 6-Bump Chip Scale Package
- 0.700mm(W) x1.100mm(H) x 0.280mm(T)
- 0.4mm Bump Pitch

3. Pin Assignments

4. Pin Description

Pin Name	Pin Number	Description
VSS	1	Ground
OUTN	2	I/O, H-bridge Output
SDA	3	I ² C data
SCL	4	I ² C clock
OUTP	5	I/O, H-bridge Output
VDD	6	Power Supply

5. Ordering Information

Order Part Number	Top Marking	Pb-Free	T _A	Package
CN3938V	38V	Yes	-40 to +85°C	WLCSP6

6. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maxim rating conditions for extended periods may affect device reliability.

Parameter		Conditions	Min.	Тур	Max.	Unit
Supply Voltage	VDD				6.5	V
Logic Input Voltage Range	Vin		-0.3		VDD+0.3	V
Junction Temperature	Tj				150	°C
Storage Temperature Range	Ts		-40		150	°C
Operating Temperature Range			-40		85	°C
ESD (HBM)				8		KV

7. Recommend Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation to ensure optimal performance to the datasheet specifications. CHIPNEXT does not recommend exceeding them or designing to Absolute Maximum Ratings.

Parameter	Min.	Тур.	Max.	Unit
VDD, Supply Input Voltage	2.3	3	5.5	V
Vin, Control Input Voltage	0		VDD	V
SCL, I2C Bus Clock Rate			400	KHz
Junction Temperature Range	-40		125	V
Ambient Temperature Range	-40		85	°C

8. Electrical Characteristics

 $T_A = 25^{\circ}C$, VDD=2.8V (unless otherwise specified)

Characteristics	Symbol	Test Conditions	Limits				
Characteristics	Symbol Test Conditions		Min.	Тур.	Max	Units	
Overall							
Supply Voltage	VDD		2.3	2.8	5.5	V	
Summer La Comment	Ivdd	Quiescent mode (DAC≠512)		0.35		mA	
Supply Current	Ivad	Power Down Mode,	-1		1	uA	
		Iout<1uA,					
UVLO VDD threshold	Vth_uvlo	when VDD decrease to		2		V	
		Vth_uvlo					
UVLO hysteresis	Vhys_uvlo			100		mV	
Thermal shutdown Temp	Tjtsd			145		°C	
Thermal shutdown hys	Thys			15		°C	
D/A & Driver							
Resolution		Target=195uA/LSB		10		Bit	
Positive Relative Accuracy	P_INL ⁽¹⁾	Code from 512 to 1023	-4	+	+4	LSB	
Positive Differential Nonlinearity	P_DNL ⁽¹⁾	Guaranteed Monotonic	-1		1	LSB	
Negative Relative Accuracy	N_INL ⁽¹⁾	Code from 0 to 512	-4	+	+4	LSB	
Negatives Differential Nonlinearity	N_DNL ⁽¹⁾	Guaranteed Monotonic	-1		1	LSB	
Zero Code Error ⁽²⁾	ZCE	DAC=Zero Current Code=512	-0.01		0.01	mA	
Max output current	Imax	Code=0/1023	+/-126	+/-130	+/-134	mA	
Output Rds on	Rds	Rsense+Rsink, Iout=60mA,		2.5		ohm	
Output current @ Power Down	Iout		-0.1		+0.1	uA	
Logic Input / Output (SCL,S	DA)						
Logic input (SDA, SCL) low level	VIL				0.54	V	
Logic input (SDA, SCL) high	V····		1.20			N/	
level	Vih		1.26			V	
Logic input current	Iin	Vin from 0V to VDD	-1		1	uA	
Output voltage (SDA)	Vol	Iload=3.0mA			0.10	V	
Hardware Reset Detection time ⁽¹⁾	Thrst	SCL& SDA=3mA			3	ms	
Setup time for normal operation ⁽¹⁾	Topr		100			us	

(1) These are guaranteed by design and characterization

(2) Zero current code =512 (default)

11. Slew Rate Control (SRC) Setup Method

Mechanical ringing is an inherent problem in VCM. Various fast settling algorithms are implemented for reducing mechanical ringing and achieving very fast settling time, and as a result, enhances autofocus response times, image quality, and user experience. These algorithms incorporate a wide band of tolerance around the vibration period of the VCM to compensate for manufacturing variability in the mechanical vibration period (t_{VIB}) of VCM.

CN3938V offers various fast settling modes which are trade-off between operation time and tolerance. User can choose optimal fast settling mode for each application.

Ouput Current

Operation Time and Tolerance for Different Modes

SRC Setting	Time
-------------	------

SRC Mode	Operation time ⁽¹⁾	Tolerance of VCM ⁽²⁾
Direct	-	-
EDLC	1.00 x t _{VIB}	$\pm 18\%$
SAC1	0.33 x t _{VIB}	$\pm 8\%$
SAC2	0.50 x t _{VIB}	$\pm 9\%$
SAC2.5	0.67 x t _{VIB}	$\pm 15\%$
SAC3	0.75 x t _{VIB}	$\pm 16\%$
SAC3.5	0.96 x t _{VIB}	±24%
SAC4	1.25 x t _{VIB}	±37%
SAC5	1.71 x t _{VIB}	$\pm 43\%$
SAC6	1.96 x t _{VIB}	$\pm 63\%$

(1) The time to reach a target current.

(2) Tolerance can be changed by mechanical characteristics of specific actuators.

Test Results for Different SRC Modes

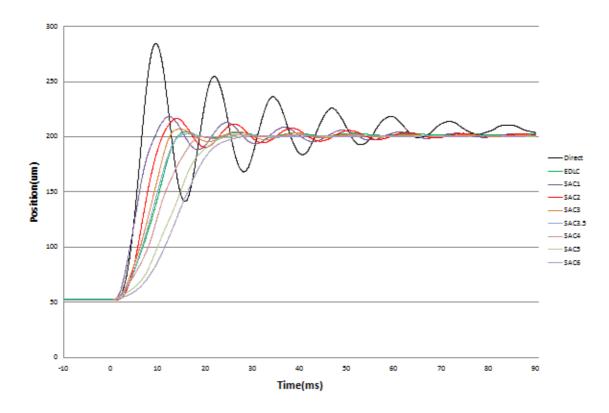
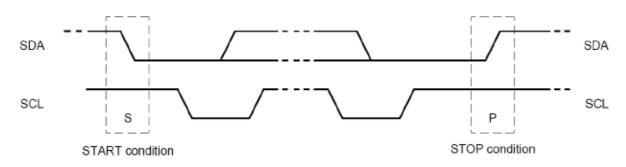
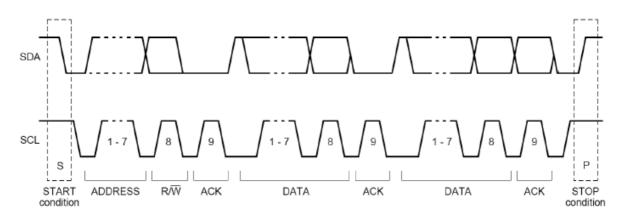



Figure 8. Test Results for Different Advanced SRC Mode


12. I2C Protocol

12.1 Start and Stop Condition:

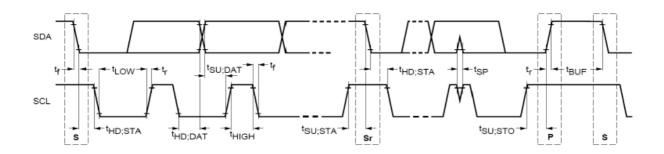
Within the procedure of the I2C-bus, unique situations arise which are defined as START(S) and STOP(P) conditions. A HIGH to LOW transition on the SDA line while SCL is HIGH is one of such unique cases. This situation indicates a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

12.2 Complete I2C Data Transfer:

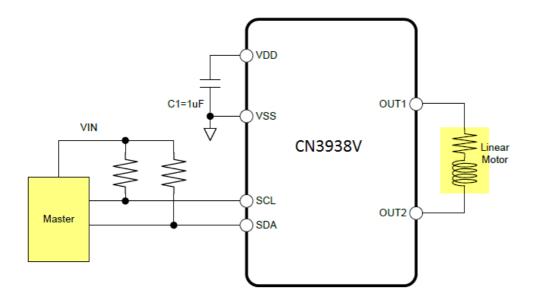
Data transfers follow the above format. After the START condition(S), a slave address is sent. A data transfer is always terminated by a STOP condition(P) generated by the master. However, if the master still needs to communicate on the bus, it can generate a repeated data transfer.

Description	Complexed	Fast-mode		Fast-mode Plus		L In it
Parameter	Symbol	Min.	Max.	Min.	Max.	Unit
Serial clock frequency	f _{SCL}		400		1000	kHz
Hold time (repeated) START condition.	t _{HD;STA}	0.6	-	0.26	-	us
Low period of the SCL clock	t _{LOW}	1.3	-	0.5	-	us
High period of the SCL clock	t _{HIGH}	0.6	-	0.26	-	us
Set-up time for a repeated START condition	t _{su;sta}	0.6	-	0.26	-	us
Data hold time	t _{HD;DAT} ⁽¹⁾	0	-	0	-	us
Data set-up time	t _{su;dat}	100	-	50	-	ns
Rise time of both SDA and SCL signals	tr	20+0.1C _b ⁽²⁾	300	20+0.1Cb ⁽²⁾	120	ns
Fall time of both SDA and SCL signals	t _f	20+0.1C _b ⁽²⁾	300	20+0.1C _b ⁽²⁾	120	ns
Set-up time for STOP condition	t _{su;sто}	0.6	-	0.26	-	us
Bus free time between a STOP and START condition	t _{BUF}	1.3	-	0.5	-	us
Capacitive load for each bus line	Cb	-	400	-	550	pF
Pulse width of spike suppress	t _{SP}	0	50	0	50	ns
Data valid time ⁽³⁾	t _{VD ;DAT}	-	0.9	-	0.45	us
Data valid acknowledge time ⁽⁴⁾	t _{VD ;ACK}	-	0.9	-	0.45	us
Noise margin at the LOW level	VnL	0.1V _{DD}	-	0.1V _{DD}		V
Noise margin at the HIGH level	VnH	0.2V _{DD}	-	0.2V _{DD}		V

12.3 I2C Timing:

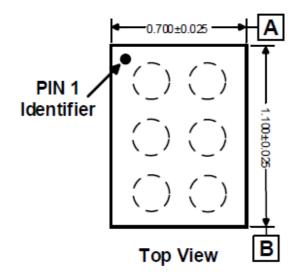

(1) A master device must provide a hold time of at least 100ns for the SDA signal to bridge the undefined region of the falling edge of SCL. The maximum $t_{HD;DAT}$ has only to be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal.

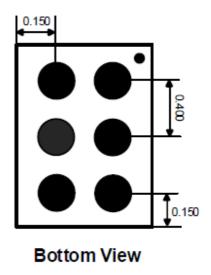
(2) Cb is the total capacitance of one bus line in pF, tr and tf are measured between 0.3VDD and 0.7VDD.

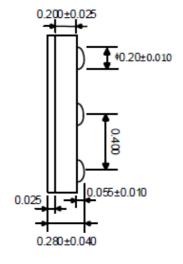

(3) tvD;DAT = time for data signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is

worse).

(4) tVD;ACK = time for Acknowledgement signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).


13. Typical Application Circuit




- * Power supply decoupling capacitor (C1) should be placed as close to the VDD and VSS as possible.
- % The value of C1 is recommended more than 1uF.
- % PCB pattern of VDD, GND, OUTP and OUTN should be as short and wide as possible.

CN3938V

14. WLCSP 6 Package of Outline (All Units of Measure=mm)

